2025屆海南省高三年級第一次校模擬考試數學試題_第1頁
2025屆海南省高三年級第一次校模擬考試數學試題_第2頁
2025屆海南省高三年級第一次校模擬考試數學試題_第3頁
2025屆海南省高三年級第一次校模擬考試數學試題_第4頁
2025屆海南省高三年級第一次校模擬考試數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆海南省高三年級第一次校模擬考試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,則()A. B. C. D.2.的內角的對邊分別為,若,則內角()A. B. C. D.3.若,則函數在區間內單調遞增的概率是()A.B.C.D.4.為實現國民經濟新“三步走”的發展戰略目標,國家加大了扶貧攻堅的力度.某地區在2015年以前的年均脫貧率(脫離貧困的戶數占當年貧困戶總數的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加該項目戶數占2019年貧困戶總數的比)及該項目的脫貧率見下表:實施項目種植業養殖業工廠就業服務業參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍5.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.6.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數的圖象向左平移個單位長度,得到函數的圖象.其中假命題的個數是()A.0 B.1 C.2 D.37.如果實數滿足條件,那么的最大值為()A. B. C. D.8.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.9.執行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.10.在平行四邊形中,若則()A. B. C. D.11.中,點在邊上,平分,若,,,,則()A. B. C. D.12.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的定義域是___________.14.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.15.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.16.某市高三理科學生有名,在一次調研測試中,數學成績服從正態分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)橢圓:()的離心率為,它的四個頂點構成的四邊形面積為.(1)求橢圓的方程;(2)設是直線上任意一點,過點作圓的兩條切線,切點分別為,,求證:直線恒過一個定點.18.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.19.(12分)記數列的前項和為,已知成等差數列.(1)證明:數列是等比數列,并求的通項公式;(2)記數列的前項和為,求.20.(12分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點.求證:(1)AM∥平面BDE;(2)AM⊥平面BDF.21.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.22.(10分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數為的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用指數函數和對數函數的單調性,將數據和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數函數和對數函數的單調性比較大小,屬基礎題.2、C【解析】

由正弦定理化邊為角,由三角函數恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關鍵.3、B【解析】函數在區間內單調遞增,,在恒成立,在恒成立,,函數在區間內單調遞增的概率是,故選B.4、B【解析】

設貧困戶總數為,利用表中數據可得脫貧率,進而可求解.【詳解】設貧困戶總數為,脫貧率,所以.故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【點睛】本題考查了概率與統計,考查了學生的數據處理能力,屬于基礎題.5、A【解析】

作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.6、C【解析】

結合不等式、三角函數的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數單調性的應用,考查了三角函數圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.7、B【解析】

解:當直線過點時,最大,故選B8、C【解析】

首先根據垂直關系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據長度關系可構造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質可知:平面,,且.設,,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關問題的關鍵是能夠利用球的性質確定外接球球心的位置.9、B【解析】

根據程序框圖知當時,循環終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執行的求解策略.10、C【解析】

由,,利用平面向量的數量積運算,先求得利用平行四邊形的性質可得結果.【詳解】如圖所示,

平行四邊形中,,

,,,

因為,

所以

,

,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).11、B【解析】

由平分,根據三角形內角平分線定理可得,再根據平面向量的加減法運算即得答案.【詳解】平分,根據三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.12、B【解析】

根據組合知識,計算出選出的人分成兩隊混合雙打的總數為,然后計算和分在一組的數目為,最后簡單計算,可得結果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數為:和分在一組的數目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由于偶次根式中被開方數非負,對數的真數要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點睛】此題考查函數定義域的求法,屬于基礎題.14、【解析】

如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關鍵.15、【解析】

基本事件總數,三人都收到禮物包含的基本事件個數.由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數,三人都收到禮物包含的基本事件個數.則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎題.16、【解析】

由題意結合正態分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態分布曲線,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】

(1)根據橢圓的基本性質列出方程組,即可得出橢圓方程;(2)設點,,,由,,結合斜率公式化簡得出,,即,滿足,由的任意性,得出直線恒過一個定點.【詳解】(1)依題意得,解得即橢圓:;(2)設點,,其中,由,得,即,注意到,于是,因此,滿足由的任意性知,,,即直線恒過一個定點.【點睛】本題主要考查了求橢圓的方程,直線過定點問題,屬于中檔題.18、(Ⅰ)證明見解析;(Ⅱ).【解析】

(Ⅰ)先證明

,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據題意以為軸、軸、軸建立空間直角坐標系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,則令,則,是平面的一個法向量設平面的一個法向量為令,則是平面的一個法向量=又二面角為鈍二面角,其余弦值為.【點睛】本題考查線面、面面垂直的判定定理與性質定理,考查向量法求二面角的余弦值,考查直觀想象能力與運算求解能力,屬于中檔題.19、(1)證明見解析,;(2)【解析】

(1)由成等差數列,可得到,再結合公式,消去,得到,再給等式兩邊同時加1,整理可證明結果;(2)將(1)得到的代入中化簡后再裂項,然后求其前項和.【詳解】(1)由成等差數列,則,即,①當時,,又,②由①②可得:,即,時,.所以是以3為首項,3為公比的等比數列,,所以.(2),所以.【點睛】此題考查了數列遞推式,等比數列的證明,裂列相消求和,考查了學生分析問題和解決問題的能力,屬于中檔題.20、(1)見解析(2)見解析【解析】(1)建立如圖所示的空間直角坐標系,設AC∩BD=N,連結NE.則N,E(0,0,1),A(,,0),M.∴=,=.∴=且NE與AM不共線.∴NE∥AM.∵NE平面BDE,AM平面BDE,∴AM∥平面BDE.(2)由(1)知=,∵D(,0,0),F(,,1),∴=(0,,1),∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.21、(1)詳見解析;(2)詳見解析.【解析】

(1)連結根據中位線的性質證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結是菱形對角線的交點,為的中點,是棱的中點,平面平面平面解:在菱形中,且為的中點,,,平面平面,平面平面.【點睛】本題主要考查了線面平行與垂直的判定,屬于基礎題.22、(1)乙同學正確;(2).【解析】

(1)根據變量且有線性負相關關系判斷甲不正確.根據回歸直線方程過樣本中心

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論